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A THECRETICAL ANALYSIS OF THE FLUTTER OF ORTHOTROPIC
PANELS EXPOSED TO A HIGH SUPERSONIC STREAM
OF ARBITRARY DIRECTION

By Peter A. Gaspers, Jr., and Bass Redd
Ames Research Center

SUMMARY

A theoretical analysis of the flutter of flat, rectangular, orthotropic
panels at various angles of orientation with respect to the flow direction is
presented. The analysis is based on linear small deflection plate theory and
static strip theory for aerodynamic forces. The partial differential equation
of motion is then solved approximately, for panels with clamped or simply
supported edges, using the Galerkin method.

Plots of the critical dynamic pressure parameter as a function of the
number of Galerkin modes are presented to demonstrate convergence properties
of Galerkin's method. It is shown that a large number of modes may be nec-
essary to give converged solutions. Curves of the critical dynamic pressure
parameter. as a function of flow angle are presented for various combinations
of stiffness ratios and length-to-width ratios.

INTRODUCTION

Exterior surface panels of supersonic aircraft and aerospace vehicles
often must be capable of carrying not only air loads but also acoustic, vibra-
tion, and thermal loads. Skin structures which have demonstrated promising
results are often orthotropic.

Past theoretical work on panel flutter has been devoted almost completely
to rectangular isotropic panels having simply supported edge conditions with
the air flow parallel to one edge. In some investigations (refs. 1, 2, and 3)
orthotropic panels, clamped edge conditions, and arbitrary flow angles have
been treated individually with no consideration being given to a combination
of these parameters. In one previous investigation (ref. 4) simply supported
orthotropic panels with arbitrary flow direction and midplane stresses were
analyzed.

In this paper an analysis of a flat rectangular orthotropic panel clamped
or simply supported on all four edges and exposed to a high supersonic flow of
arbitrary direction is presented. The parameters used in the analysis are
rigidity ratios, length-to-width ratio, flow angle, and the dynamic pressure
parameter. The results are presented in a series of curves for various



combinations of the parameters, from which flutter boundaries can easily be
calculated. Since modified linear piston theory is used for aerodynamic
forces, the results are restricted to Mach numbers above approximately 1.6.

SYMBOLS
a panel length
b panel width
Dy panel bending rigidity in x direction
Dy panel bending rigidity in y direction
H panel torsional rigidity
M Mach number
M number of Galerkin modes in x direction
m,n,r,s integers
N number of Galerkin modes in y direction
Nk,Ny midplane stresses, positive in compression
Ny midplane shear stress
q dynamic pressure
t time
v free-stream velocity
W panel deflection
X,¥ X1,V rectangular coordinates
a eigenvalue
B VY2
4 mass per unit area of panel
A flow angle
A dynamic pressure parameter
Ae critical dynamic pressure parameter
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p free-stream density

0] differential operator defined in equation (2a)
THEORETICAL ANALYSIS

If linear small deflection plate theory and modified linear piston theory
for aerodynamic loading are assumed, the partial differential equation of
motion for a flat, rectangular, orthotropic plate with one side exposed to a
high supersonic flow of arbitrary direction is:

d*w dtw d%w 33w 33w 33w
Dy — + 2H ———= + Dy = + Ny == + 2Nyy —— + Ny —
* oxt axRy2 Yoyt T Yoaxady Yoyt
29 (3w oo v O g g w LOV) L,
5\ 55 cos A+ 5y 5in A+ T 8%) +y e 0 (1)

where w = w(x,y,t) is the deflection and the coordinate system is shown in
figure 1.

Making the transformation x = axi, y = byy and then dropping subscripts
on Xx1,y1 for convenience, we can write equation (1) in the form:

Aa dw | yat d%w
®W+Vat+DX ach_o (2)
where @ 1is the differential operator
D
4 2 4 at N4 2 2aR 2
®=84+2Ha2 22+Dy4a4+Rxa2+ Xy 9
dx Dyb= 0x=dy Dyb* Oy ox b dx oy
aZ 2
+ __gl_é_g + A <%os A k=3 + 2 gin A ji-) (2a)
b= oy oax b dy
and
oo N Mg Ma® L 2087
x Dx X Dy Yy Dy "~ BDx

Here x and y are dimensionless with a range from O to 1.



We assume a solution of equation (2) of the form:
w(x,y,t) = U(x,y)e(t) = Ug

Substitution in equation (2) gives

aa o(ug) | yat 32(yg) N ., yat .
®(U + = + = gdU + — Ug + — Ug = O
(Ve) + 7 53 Dy 3u2 g v Ve tp U
or
U _ _deg yetg (3)
[ Veg D g

Since the left side of this equation involves only x and y and the right
side only t, both are equal to a constant which we call o and we have

®U = aU (4)

S— g+ T &= —ag (5)

Equation (4) together with the boundary conditions on U is an eigenvalue
problem which can be solved approximately by the Galerkin method in which a
linear combination of linearly independent functions, each of which satisfies
the boundary conditions, is substituted for U.

We consider panels with clamped edges and panels with simply supported
edges. For a panel with clamped edges the boundary conditions are

U(0,y) = U(1,y) = U(x,0) = U(x,1) =0
(6)

i
@)

e18) 8U BU aU
O, — ]’ — X,O = — (x, 1
E ( ¥ ) - E ( Y ) = E ( ) E ( )

A set of functions which satisfy these boundary conditions is
Umn(X;.V) = q’m(X)Wn(Y)

The form for VYp(x) is:

Vm(x) = cos Kpx - cosh Kyx + Cp(sin Kyx - sinh Kpx)

where



and where the Ky satisfy
same as that for Y, (x).

For simply supported edges the boundary conditions are

27y
Jx2

A set of functions which satisfies

Substituting

(O)Y)

U(O)Y) = U(l:y) = U(X:O) = U(X:l) =

Umn(X:Y)

in equation (4) gives:

or

Multiplying by Upg

)

n=1

> 1=
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1

or

and integrating over the panel we have:
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n=1

cosh Ky cos Ky = 1; the form for V,(y)
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where

I

i pl
Lmnrs Io Io Urg®Uyn dx dy
1if m=n

O0if m+#£n

Bun

These integrals are straightforward for either the clamped or simply
supported case and may be found in reference 5. The resulting formulas for
Iynrs are as follows:

For the clamped case:

2Ha®
Lunrs = AmSurSns + 535 DrmDsn + &ng(Hymh cos A + DymRy)
ps
a2
+ By Hsn7\ sin A + 'EE DsnRy + 2 = b nyHrmHsn

where
4
D
4 4
N +5fan

X

I
Dym = j?izgifz(KrCr KiCm) [(_l)m+r + l} (m # r)

Dym = “KnCn(KnCm + 2)
LK,2K 2
Hym = Km—fi—mz [(-1)”m - 1} (m £ 7)
~hy
Hyp = O

For the simply supported case:

1 4 22,4 a®H 4_4 a4DY 2 2 252 a®
Lonrs = T Smr6ns m*% + 2m®n > + n*n 2 - m\“x“R, - = Ry
2D, b*D, b
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+ ey nyPmr ns % cos AdpgPh. Ty sin A mrPns



where

m+n mn
Ban = | (1) - ] 2

Equations (9) are linear and can be written in matrix form:
(A - aI)C =0 (10)

A

Il

(213) aij = Lmnrs

i=(r -1)N+s J=(m-1N+n

Il

and I 1is the identity matrix.

The problem becomes that of finding the eigenvalues of the matrix A. In
what follows we set %a/V, in equation (5), to zero since for high supersonic
speeds 1t has a negligible effect on the characteristic roots of equation (5).
In this case when all eigenvalues are real, the motion is stable. If at least
one pair of eligenvalues is a complex conjugate pair, the motion is unstable,
that is, the amplitude increases with time. The value of A = 2qa®/BDx at
which a conjugate pair of eigenvalues first appear is called the critical
value and denoted Ap. For values of AN above A, flutter occurs.

The eigenvalues of the matrix A were computed with the IBM 7094 using
an existing eigenvalue program. The values of A, were obtained by a trial
and error converging process. The problem was programed for any n x n matrix
from 4 x 4 to 100 x 100, where n = MN, the product of the number of modes in
the x direction and the y direction. The input could be any combination of
the panel parameters and any number of eigenvalues could be computed. With
M=k and N = 6, for example, the matrix A is 24 x 24 and consequently has
24 eigenvalues.

RESULTS AND DISCUSSION

The results of this analysis are presented in the form of plots of the
critical dynamic pressure parameter, A., as a function of the number of modes
used and as a function of the flow angle A for various combinations of the
stiffness ratios H/Dx and Dy/Dx and the length-to-width ratio a/b. The
plots of A vVversus the number of modes demonstrate the convergence proper-
ties of Galerkin's method and the plots of A; versus A are flutter bound-
aries for which a sufficient number of modes have been used to obtain a
reasonably converged solution. Since we have used modified linear piston
theory for aerodynamic loading, the results are restricted to Mach numbers
above M = 1.6. In this Mach number range the omission of the unsteady term
in the aerodynamic loading can be shown to have only a small effect on the
flutter boundaries. This is due to the imaginary part of the eigenvalue
increasing quite rapidly above the flutter boundary and dominating the damp-
ing contribution of the unsteady aerodynamic term. (Also see ref. 6.)



The problem of the convergence of Galerkin's method for this particular
boundary value problem has not, so far as we know, been investigated. In the
absence of proofs relating to convergence properties we have used the crite-
rion that the solution is converging when it displays asymptotic behavior as a
function of the number of modes; that is, when the difference between solu-
tions with n modes and with n + 1 modes decreases as n 1increases we say
that the solution is converging. For the cases where we have exact solutions
it appears that the Galerkin method converges to the correct value.

Figure 1 shows the panel geometry. The supersonic flow of velocity V
makes an angle A with the side of the panel at y = 0. The orthotropic axes
of the plate are parallel to the sides, and Dy, the rigidity in the x direc-
tion, is always taken larger than Dy in all of the calculations.

Figures 2(a) through 2(i) demonstrate convergence properties of
Galerkin's method in the form of plots of Ae vVersus the number of modes in
the y direction for various values of a/b, H/Dx, Dy/Dx, A, and M, where WM
is the number of modes in the x direction. Figures 2(a) and 2(b) for simply
supported isotropic panels show that as the length-to-width ratio in the direc-
tion of the flow increases the number of modes required (to obtain convergence)
increases very rapidliy. At a/b = 0.5, 4 modes give a reasonably converged
solution while at a/b = 0.1, 25 modes are required to give a solution within
10 percent of the exact value which was obtained by the method of reference 6.

Figures 2(c) and 2(d) are for a clamped isotropic panel with A = 90°
using one mode in the x direction. The spanwise (x direction) modes are
coupled for the clamped case but for A = 90° the inclusion of more spanwise
modes makes only a small difference. The convergence is slightly slower but
gualitatively very much the same as for the simply supported case. Hence, the
clamped cases which correspond to converged simply supported cases are
probably converged.

Figure 2(e) shows convergence properties for small flow angles of an
isotropic panel with a/b = 0.5. For two modes in each direction (M=N=2)
the lower curves are obtained and show two stable regions. When M =N = 4,
there are still two stable regions but when M = 4 and N = 10, the upper
stable region vanishes while the main boundary remains unchanged. The upper
stable regions for both M =N =2 and M = N = 4 are thus seen to be spurious
and due to unconverged solutions.

Figure 2(f) for an a/b of 0.1 shows two stable regions when M=DN= L,
but the upper region vanishes when N is increased to 10. The curve for
M= L4 and N = 10 represents a converged solution _and for quite small flow
angles is seen to depart substantially from the M = N = L boundary.

Figures 2(g) and 2(h) demonstrate the influence of orthotropy on conver-
gence for square panels. In general, for fixed Dy/Dx <1 and a/b = 1, the
number of modes in the y direction required for convergence increases with
the flow angle and with H/DX. For values of A other than 90° at least two
modes are required in the x direction, and near 0°; three or four modes may



be required, the particular value depending on the rigidity ratios. The
convergence problem is most severe for very small Dy/DX together with large

H/Dx.

In figure 2(i) we have plotted A, versus N for a simply supported
panel of a/b = 1.0, Dy/Dy = 0.0002, and A = 90° for H/Dx = 0.15 and
H/Dx = 0.5. This case was analyzed by Bohon (ref. 4) using only 2 modes in
each direction. It is evident from the figure that the solutions are not
approaching convergence even with 50 modes. For the simply supported panel
with A = 90° an exact solution can be obtained by the method of reference 6.
The exact solution for H/Dx = 0.15 is Ae = 198, and for H/Dx = 0.5 is
1197.3. For the 2-mode solution of reference 4 and for figure 2(i),
Ae = 16.5. The 2-mode solution is thus inaccurate by a factor of about 12 or,
in other words, is about 8.5 percent of the correct value. For flow angles
other than 90° or 0° no exact solutions have been obtained and the modal
approach must be used. For the cases being considered (fig. 2(i)) a large
number of modes in the y direction would be required even for flow angles as
small as 5° and at least two modes would be required in the x direction.
The maximum matrix size MN x MN of this analysis was limited to about
60 x 60 because of inherent limitations in the eigenvalue program.

Figures 3 through 5 are converged flutter boundaries for various combina-
tions of the parameters. For values of Ac 1in the region above a curve
flutter occurs; for values below the curve the panel is stable. The criterion
used for convergence was that A. should be at least 85 percent of the fully
converged value. Since the fully converged value must be estimated by plot-
ting A, as a function of the number of modes, the 85-percent criterion will
be conservative in most cases. Figure 3 shows the variation of A, with flow
angle for several values of a/b. Figure 4(a) shows the influence of flow
angle on A, for three values of H/Dy with Dy/Dy = 0.1 and a/b = 1. The
curve for H/Dx = 1 is curious in that it actually intersects the curves for
smaller H/Dy and shows a minimum at about A = 70° rather than at 90°. This
behavior is considered in more detail in the discussion of figure 5.

The significance of figure 4(a) is that the torsional rigidity H has
little effect at flow angles near zero but very large influence near 90°. The
influence of torsional rigidity is even more pronounced in the curves of fig-
ure 4(b) for Dy/Dy = 0.01. For H/Dx = 0.01, A. decreases very rapidly with
increasing A. For higher values of H/DX, the influence of flow angle is
progressively less. The curves for H/DX =1 and H/Dx = 0.5 do not extend
to A = 90° because convergence could not be obtained at the larger flow
angles. Figure 5 shows A, as a function of H/DX for a square panel with
D%/DX = 0.1 at several small flow angles. For flow angles up to about 20°,
the maximum Ae actually occurs for H/Dy less than 1. At A = 0° the max-
imum A, occurs at H/Dy = 0.5. One would expect the maximum Ao to occur
at the maximum H/Dx but this is not the case for these flow angles. Fig-
ure 5 displays more clearly the behavior for small flow angles in figure 4(a).

It should be noted that the range of values of Dy/Dx and H/DX that
might occur in practice has not been well established. Several types of
panels including rib-stiffened and corrugation-stiffened panels have been
analyzed by considering them to be orthotropic and calculating or measuring



their equivalent stiffnesses by assuming homogeneity. (Ssee ref. 7 for
example.) The panel parameters Dy/Dy = 0.0002, H/Dy = 0.15, a/b = 1.0

(fig. 10) correspond approximately to values measured and calculated in ref-
erence 7 for a corrugation-stiffened panel. They are also typical of some
skin panels that are being used on certain aerospace vehicles. 3Since a
corrugation-stiffened panel is not truly homogeneous but has a periodic struc-
ture, it may possibly not be accurate to treat it as homogeneous in a flutter
analysis if a large number of modes are needed in the solution. As the modal
wavelength approaches the structural cell size the theoretical model may not
accurately represent the physical situation.

Finally, for reference, we have included the midplane stress terms,
Nx, Ny, Nyy, in the equations but have made no calculations for nonzero
stresses.

CONCLUSIONS

For a fixed bending stiffness ratio Dy/DX and length-to-width ratio,
the critical dynamic pressure parameter ., and hence the dynamic pressure at
flutter, is strongly dependent on the torsional stiffness ratio H/DX. In
particular, for values of H/DX near Dy/DX, Ae 1s very sensitive to a small
change in flow angle, A, near A = 0°.

In theoretical work employing the Galerkin method, the accuracy of the
results obtained must be considered carefully. We have shown that for iso-
tropic panels with high length-to-width ratios and for most orthotropic panels
including those of practical importance, a large number of Galerkin modes is
required to obtain converged solutions.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., April 21, 1966
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